a2 United States Patent

Pezeshki et al.

US011558344B1

US 11,558,344 B1
Jan. 17, 2023

(10) Patent No.:
45) Date of Patent:

(54)
(71)

(72)

(73)

")

@
(22)

(60)

(1)

(52)

(58)

RESOLVING BLOCKCHAIN DOMAINS

Applicant: Unstoppable Domains Inc., Las Vegas,
NV (US)

Braden River Pezeshki, Pullman, WA
(US); Matthew Everett Gould, Reno,
NV (US); Bogdan Gusiev, Kyiv (UA)

Inventors:

Assignee: Unstoppable Domains Inc., Las Vegas,

NV (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/486,512

Filed: Sep. 27, 2021
Related U.S. Application Data

Provisional application No. 63/084,493, filed on Sep.
28, 2020.

Int. CI.
GOGF 16/9032 (2019.01)

GOGF 16/9536 (2019.01)

G06Q 10/02 (2012.01)

HO4L 29/06 (2006.01)

GOGF 21/30 (2013.01)

HO4L 61/4511 (2022.01)

HO4L 9/32 (2006.01)

HO4L 12/66 (2006.01)

HO4L 67/02 (2022.01)

HO4L 61/5007 (2022.01)

HO4L 9/00 (2022.01)

U.S. CL

CPC ... HO4L 61/4511 (2022.05); HO4L 9/3236

(2013.01); HO4L 12/66 (2013.01); HO4L
61/5007 (2022.05); HO4L 67/02 (2013.01);
HO4L 9/50 (2022.05)
Field of Classification Search
CPC ... HOAL 61/1511; HO4AL 9/3236; HO4AL 12/66;
HOAL 61/2007; HOAL 67/02
See application file for complete search history.

1202~

(56) References Cited

U.S. PATENT DOCUMENTS

2018/0115413 Al1* 4/2018 Kingccoovvvvvvnnne. HO4L 9/30
2019/0043048 Al* 2/2019 Wright ... HO4L 9/3247
2019/0166085 Al* 52019 Li HO4L 9/0618
2019/0349426 Al* 112019 Smith ... HO4L 63/123
2020/0044827 Al* 2/2020 SnOW ... GO06Q 20/367
2021/0240784 Al* 82021 Xiao ... GO6F 16/9566

FOREIGN PATENT DOCUMENTS

WO WO0-2020051160 Al * 3/2020

OTHER PUBLICATIONS

Nick Johnson, “EIP-137: Ethereum Domain Name Service—
Specification,” Ethereum Improvement Proposals, No. 137, Apr.
2016. [Online serial]. Available: https://eips.cthereum.org/EIPS/eip-
137.

Phyrex Tsai, Portal Network Team, “FIP-1062: Formalize IPFS
hash into ENS(Ethereum NameService) resolver [DRAFT],” Ethereum
Improvement Proposals, No. 1062, May 2018. [Online serial].
Available: https://eips.ethereum.org/EIPS/eip-1062.

* cited by examiner

Primary Examiner — Christopher B Robinson
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James
LLP

(57) ABSTRACT

A request to resolve a name of a domain of an identifier of
web content is received. It is automatically determined that
the name of the domain is to be resolved using a blockchain.
A request is sent to a smart contract of the blockchain to
obtain one or more resolution records for the domain. The
one or more resolution records of the domain are received.
The received one or more resolution records are utilized to
resolve the name of the domain.

20 Claims, 15 Drawing Sheets

Receive a request to resolve a name identifier of web content

1204~ l

Determine that 2 name of a domain included in the name identifier
is to be resolved using a blockchain

1206~ l

Send a request fo a smart contract of the blockchain to obtain one
or more resolution records for the domain

1208~ l

Receive the one or more resolution records for the domain

1210~ l

Utilize the received one or more resolution records to resolve the
name of the domain

US 11,558,344 B1

Sheet 1 of 15

Jan. 17,2023

U.S. Patent

1 ©Old

"'GPEVXQ SSalppe yIH | L 0)dAID
o)dA1o a11eyd

e dX0 -SSaIppyY
Z J19A|0SaY

\-90l

" PEVX0 SSalppe yIH | L 01dAID
0}dA1oqoq |

2

"'€ZLVX0 SSaippe yIMO| L 0ydAid
0}dA1o"d9le |

A

"H£Zgx(Janjosal

"GPEYX0 JSUMO

o}dAioaleyd |

~

€21 gx(Janjosal

"BE VX0 [JSUMO

0}dA1o'qoq |

~

~

€21 gX0 -Ssalppy
L JOA|OSaY

A

-0l

€21 8%Q J9A|0S8l

"©Z1¥X0 Jaumo

0}dA1o"a9lfe |

Y

Ansiboy

\-z0l

US 11,558,344 B1

Sheet 2 of 15

Jan. 17, 2023

U.S. Patent

¢ Old
("sassaippe JojeladQ 9 paroiddy
ay} BIA sjoesuo)) pewgysddeq
oS 0} Ajjeuorouny _»_mcm% ajebojep
ueo sias(“WwaysAs Buuoissiwied
I 8q ued Aljewsaju 16o] 1eyjo |y X9|dLo2 & 9ABY 0} SJASN SMOJIe Sy |
pI028Y WojSny || "SIBHSIUI JOPBOYIBAI0STY| UleWop
8} 0] LIOJUOD ISNLUI SIBAJ0SY :
e Ajpow ued oym sauo Ajuo sy}
19Aj0S3Y wojsny ale (pJooay Jasn 18y} eiA) siojesado
o0z 8,I8UMQ 8U] SE [[om se ‘panoiddy
| '9JoumQ pioooy ulewoq 8yl |
*"§PI0JSI JO 18S ||} B 10} UOIJRJUSUNIOP 938 ' le€eex0 2zzox0 ‘vl sicjesadg
pI02aY Jasn
L2000k 000k 1Y sup =
| GYZZUN ‘sSaIppe Y3 Y| L 0jdAi .
X ‘Wbu Y} 0) 8soy}
9)l| JOA|0S8) B 0} SPUOdsSaLI0 piods)
UIBWIOP U} UO Pjal} JAA|0SAY 8Y] |
<UBWIOP> + <XJAId[UN> a0
(| 19881 Siesald Josald " 196X0 : panoiddy
Jusdiny o|dwex3 (18Aj088Y Jnejeq) I0eX() : JOAJ0SY
(plusyo} ‘,yy'sup,) 106 TECLXQ fJeuMQ
fay Aq spiogal s jesaud i P4093y Ulewoq
PA0ISY JaAI0SSY JuaLng 8y} Aanb ued sias ‘
_ 19A|0S3Y }jnejaq fnsibay
02 \-z02

U.S. Patent Jan. 17, 2023 Sheet 3 of 15 US 11,558,344 B1

302~

Receive a request specifying a management action to
he performed

304~ v

Determine whether the request specifying the
management action is authorized

306~ !

Allow the management action {0 be performed if the
reguest is determined o be authorized

FIG. 3

U.S. Patent Jan. 17, 2023 Sheet 4 of 15 US 11,558,344 B1

402~

Receive a request to update, for a domain, a target
record of a specified type

404 ~ v

Update a blockchain of a resolver smart contract to
associate the targst record of the specified type {0 the
domain

FIG. 4

US 11,558,344 B1

Sheet 5 of 15

Jan. 17, 2023

U.S. Patent

G Old

M)) sabueyn J09)10y o |
.................................. > !
cls --:----:E@W_E ,,,,,,,, - / |
urewoq ajepdn bl 915 |
w obessapy $s800.d m
Joubig sjepifep "SJUN0JJE WOPUE! |
9 aimeubls uonoesues | J0 108 B Ujm suonoesue.l) |
18A008Y4-97 GOy JWGNS WINaJIay}e Jo 8Yyoeo e $$a00.d |
ole < 7 L iekejey uonoesue.] | m
80S jsonbay uonoesuel | |
B » abessapy puss !
abessapy 1onssuon ndu 88y M
T T 705 , o\m
| i - _

GEIE] TEATEE =R

MO|4 uonjoesues]-ejoly ajdwexg

U.S. Patent Jan. 17, 2023 Sheet 6 of 15 US 11,558,344 B1

602~

Receive a request (o resolve a name of a domain info a
target record

604~ '

Obtain and provide the target record of the specified
tvpe that corresponds {o the name of the domain

FIG. 6

US 11,558,344 B1

Sheet 7 of 15

Jan. 17, 2023

U.S. Patent

L™Old

ssaJppe’H 13 0)dAio woy)
PoJoR.IIXS SSAIPPE 0} JAY} puas)
uonoesuel) buipuss ubig
SSaIppE WnaJay)3 pijeA Se anjea
ssaippeH[3-0ydAid Ajuap

(p1098. UlRWIOP

anjeA pJooal

ssaJppeH13 0)dA1d

C
C

-

"~ Uooesues poubls pusg
m .
ureyayo0g usyo | ureyayoolg
/ Kauauing oydfin ebjjjiz / wnaiay)3

pJo9al Uewop
ssalppe’H]303dAi

peay

uonesiddy

) jiz'sjdurexs 1o
oydAio-9jdwexa
T OHL3 puss

 ————-

1+
—O

oydAin puag

Mo} ssa29ans sjuawded oydAiy

(019 ‘'SO3 10} 0ISOF
.Ihm Joj wnaJssyly
‘019 40} uI00)Ig) pajsoy
S Aouaungo JUSS ajaym
WOM]DU UIBYIYo0[q 8y L

ureysya0jq usyo |
/ Kouaiing oydfion

"SJOBIJUOY) RS
LIOJJ BJEpE)aL SUIBLIOP
peau 0} psau uoyeoldde
JUBIID B Way) eAjosal

0} JopIO0 U] "S}oRHU0D
yews se Ajbuipiosoe
sureyaxo0[q ebijjiz pue
wnaisy}3 ui pehojdap
aJe SIaAj0Sal pue
sauysibal j1z: pue 0ydAio

ureyaya0jq
ebjjiz / wnasey3

puabo

/och

US 11,558,344 B1

Sheet 8 of 15

Jan. 17, 2023

U.S. Patent

/ Sp10031 UiBwop 1sanbay A3l

| SSaippY Wnassyg
JORIUOY) LBUIS JRAJOSSY

%08

(3 U8¥0] pepinoid Jo)
1SDI008) LIBLIOD 188nDaY

- 10dNOST dLLH]

(3 UBYG] DajEnoED
Buisn ssauppe wneisylg
J0BIUOT RIS
JaA05y 15enbay JAATl

) \

c08

Ay

VBUIS JBA0S3Y JIRAUOT

veuis Agsilsy

L

JORIUOT) VRIS
lopeay Axoid

{

19BIIUOY MRS Jopesy AXOJ] BIA SPIO2SI LIBIOP SPIACIY

it
HOoUn) 1RAU07) Pews 1o - Jaal

$1000]040 YOAEL BIA JB7) - [d L1 H]

"3D0U WNSISULT 0} SiEY
dLLH 10 unouse Buisesiosp o) JedisH
- JOBINOS UBWG Jopesy Axig

"BUL} LIRS By
18 JBA0SE} L0 0] DAY 8Q UBD WRuIng
HIOMIBU WNBIBLLT U SISIXE-5/0A|058
sidnw e sy ebeios spiona)
UIBWIOG - JOBAUST LIRS JBAI08Y

SIGAOSSS PUB dRSIBUMO S UBWICD
1008 UONBULOI $83018 Yol Angibal
suiBwio(] - rnusy pews Ansiiey

pusfier)

U.S. Patent Jan. 17, 2023 Sheet 9 of 15 US 11,558,344 B1

902~

Client

Blockchain

904~

Management
Server(s)

FIG. 9

U.S. Patent Jan. 17, 2023 Sheet 10 of 15 US 11,558,344 B1

1000
X 1002~
Processor
1014
1018~ N
Display
1010~
Memory
1004~
Keyboard
1012~
Removable
Mass Storage
1006~ Device
Pointing
Device
1020~
Fixed Mass
Storage Device
1016~
Network
Interface

FIG.10

U.S. Patent Jan. 17, 2023 Sheet 11 of 15 US 11,558,344 B1

1102~
1108~
Client Blockchain
os domain 1110~
N supporting DNS
gateway Decentralized
Browser web gateway

Blockchain ', { Decentralized
/ \, Content Network

FIG. 11

U.S. Patent Jan. 17, 2023 Sheet 12 of 15 US 11,558,344 B1

1202~

Receive a request to resolve a name identifier of web content

1204~ |

Determine that a name of a domain included in the name identifier
is to be resolved using a blockchain

1206~ !

Send a request to a smart contract of the blockchain to obtain one
or more resolution records for the domain

1208~ {

Receive the one or more resolution records for the domain

1210~ !

Utilize the received one or more resolution records to resolve the
name of the domain

FIG. 12

US 11,558,344 B1

Sheet 13 of 15

Jan. 17, 2023

U.S. Patent

€L "Old "

ozel L
.................... JUSJUOOBNSQeM
< \ Jaynuapi yusjuo? Aq usjuod
pze) SWsqemisenbey [dan/doLl
$pJ0J3i Ulewop Wolj
(938 ‘ysey ‘pi) saypuopl
JusU0Y) JoeNXT]
| 0zel
M sj090)0.d papoddns
___JIe Joj Spiodsi ulewoq |

(018 ‘ULeMS ‘S4d)
YIOM)BU JUdjU0I
pazjjesjusda(g

\-90¢1

ureyoxoojg

wnassyl

@] uayo] papiaoid 1o}
sjoo0j0.d papoddns ||e 1oj
spJodal ulewop aqissod |[e
pue [0290j01d paieje.d
Jasmolq Jsenbay

[DdY-NOST ‘d.LLH]

) oLel -~
urewop
oydAio-ajgeddoisun Joj
@i uayoy denojen

143

~0jdAio-a|qeddojsun Joj jsenbay

I
i
i

\

clel

lasmoig

N N .

US 11,558,344 B1

Sheet 14 of 15

Jan. 17,2023

U.S. Patent

¥l "Old

| vevl " oevlL “
\ JUBJUOD SYSTOM ~ \|_ 1uspoo aysqem =
.. T R LU R PP EEEPP R =
: B / Jalnuapi Jusjuod Aq Jusuod
| gep) OUSyOMisanbay [dan/doL]
| (o yseypy) |
| 0spL l\w Jeijpuspj jusyiod 8Zyl
| piodal Al
m ap| udjuon) i1senbay /
| [Ody-NOSF ‘dLLIHl | |e T .
| ,.E_mE% 0)dAI0"9ARIq O} OjdAtoraneiq 1sanbay [d L H]
| | @l usyoy sjejnofe) mfﬂ | SSAIPPE |
! ! ozyl | Ocvl | Aemoieb S4dl uim
| | | Boowoy \ (). PUOSUVSNG |
i _ | ssalppe d| Aema)eb \
i " | 1020j0.d peay
m A 8Lyl | eyl
I N /o | yiomyou poujeid |
m m oLyl
| <gi ueyoL papioid 1o} | Zlyl
i |0o0j0id pauegaud | ulewop o0jdAio-aAelq \
m - Jjesmoiqisenbay 1 Ioj gy uayoy - ko onei
_ ! - ‘ | alejnoje
m | [Od¥-NOST ‘d.LLH] | Jejnofed L) jsonboylsnal L
! | ! VivlL ! JSMoIg
pozieU80s(Wwnaseyyd Aemajeb qapma SNa) Aemajeb SNG =z
0Lyl 80Vl \-90v1 0Vl zovl

U.S. Patent Jan. 17, 2023 Sheet 15 of 15 US 11,558,344 B1

1502~

Obtain using a blockchain of a blockchain-based name service,
resolution record(s) for a name of a domain to be resolved

1504~ 4
Determine an ordered list of preferred protocols using the received
record(s)
1506~ l

Iterate over each protocol in the order of the list until a matching
target content identifier exists for the protocol

If matching target content identifier has been identified, determine
to resolve the name of the domain using the matching protocol

1510~ l

If no matching target content identifier has been identified, redirect
the domain, if applicable

FIG. 15

US 11,558,344 B1

1
RESOLVING BLOCKCHAIN DOMAINS

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 63/084,493 entitled BLOCKCHAIN
DOMALINS filed Sep. 28, 2020 which is incorporated herein
by reference for all purposes.

BACKGROUND OF THE INVENTION

Domain name system (DNS) is a naming system for
computer resources connected to a network. It allows a user
to refer to the resource using a human-friendly identifier that
is easy to understand and remember rather than requiring the
user to use a native functional identifier that is often unin-
tuitive and difficult to remember. For example, the domain
name system allows a user to reference a website by its
human-friendly hostname/URL (Uniform Resource Loca-
tor) rather than using its IP (Internet Protocol) address.
Typically a domain name registrar acts as a centralized entity
that manages registration, record updating, transfer, and
hosting of a domain name system. However, this centralized
management and execution of the domain name system
concentrates power and innovation in a central entity that
may not be able to fulfill its duty in the best interest of the
community. For example, the central entity may become a
central point of failure, stifle innovation, or unjustly institute
policies that prevent flow of information. Often users utilize
a web browser to access web resources identified using a
domain name. If a new mechanism to resolve domains is to
be implemented, there exists a need for a way to enable the
web browser to resolve these domains using the new mecha-
nism.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a block diagram illustrating an embodiment of
blockchain smart contracts utilized to implement a name
service on a blockchain.

FIG. 2 is a block diagram illustrating additional details of
an embodiment of an implementation of blockchain smart
contracts of a decentralized name service.

FIG. 3 is a flowchart illustrating an embodiment of a
process for managing a domain of a blockchain-based name
service.

FIG. 4 is a flowchart illustrating an embodiment of a
process for updating target records of a domain managed
using a blockchain-based name service.

FIG. 5 is a flow diagram illustrating an embodiment of
performing a meta-transaction for a domain managed using
a blockchain-based name service.

FIG. 6 is a flowchart illustrating an embodiment of a
process for resolving a domain managed using a blockchain-
based name service.

FIG. 7 is a flow diagram illustrating an embodiment of
resolving a name identifier using a blockchain-based name
service for a cryptocurrency transaction.

FIG. 8 is a flow diagram illustrating an embodiment of
using a proxy reader smart contract to resolve a target record
of a domain managed using a blockchain-based name ser-
vice.

20

25

30

35

40

45

50

55

60

65

2

FIG. 9 is a block diagram illustrating an embodiment of
a blockchain-based name service environment.

FIG. 10 is a functional diagram illustrating a programmed
computer system for using, managing, or executing a block-
chain-based name service in accordance with some embodi-
ments.

FIG. 11 is a block diagram illustrating an embodiment of
a system for resolving a name of a domain of a decentralized
blockchain-based name service.

FIG. 12 is a flowchart illustrating an embodiment of a
process for resolving a name identifier.

FIG. 13 is a flow diagram illustrating an embodiment of
a process for requesting and receiving decentralized web
(dWeb) content.

FIG. 14 is a flow diagram illustrating an embodiment of
a process for requesting and receiving decentralized web
content via remote gateways.

FIG. 15 is a flowchart illustrating an embodiment for
handling protocol priority when performing domain resolu-
tion for a domain resolved using a blockchain of a block-
chain-based name service.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such
as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that is tem-
porarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

A decentralized name service based on blockchain tech-
nology is disclosed. In some embodiments, the name service
is based on a set of smart contracts on the crypto blockchain
(e.g., Ethereum blockchain) that govern how domains are
created and used. Although it can serve a similar purpose as
a traditional DNS system, a decentralized name service has
architectural differences that change the interaction model.
For example, decentralized name service domains can be
owned irrevocably. In some embodiments, they do not need

US 11,558,344 B1

3

to be renewed and cannot be reclaimed by a central author-
ity. For example, once claimed, users have complete control
of their domains. The blockchain is a decentralized and
distributed computer ledger that records transactions that are
publicly viewable and verifiable. The transactions can be
audited to ensure an object tracked on the blockchain has
been transferred only once between each party in each
transaction without being reproduced to be double spent. By
tracking ownership of a domain on the name service block-
chain, public, secure, and verifiable ownership of a domain
is ensured.

The decentralized name service is deployed using smart
contracts. A smart contract includes self-executing code that
functions to implement an agreement deployed to store state
and execute code on the blockchain. This allows an agreed
upon contract code to execute in a distributed and verifiable
manner. The smart contracts of the decentralized name
service govern how domains are created, managed, and
utilized. For example, every domain is issued a non-fungible
token on the blockchain that is owned by an owner (e.g.,
irrevocably—cannot be reclaimed by a central authority and
does not need to be renewed). The owner can transfer
ownership of the token to transfer ownership of the domain
to another user via a compatible wallet, exchange, or mar-
ketplace rather than only from a single central authority.

In various embodiments, use of a domain of the decen-
tralized blockchain-based name service to reference web
content is supported directly by a web browser, via an
intermediary gateway/server, and/or via a browser plugin/
extension. In some embodiments, in response to a request
received to resolve a name identifier of a web content, it is
automatically determined that the domain of the name
identifier is to be resolved using a blockchain. For example,
a user inputs a Uniform Resource Locator (URL) of a
webpage that the user desires to view on a web browser, and
because the top level domain of the URL is determined to be
associated with a decentralized name service it is automati-
cally determined that the domain of the name identifier is to
be resolved using a blockchain of the decentralized name
service. A request is sent to a smart contract of the block-
chain to obtain one or more resolution records for the
domain of the name identifier and these one or more records
are received. The received one or more resolution records
are used to resolve the domain of the name identifier. For
example, the one or more resolution records specify con-
figurations and/or a target destination location/address for
the domain of the name identifier and these record(s) are
used to resolve the domain to a specified IP address, and
redirect to an alternate address, a decentralized web (DWeb)
content hash identifier, and/or any other information that can
be used to obtain web content referenced by the name
identifier.

FIG. 1 is a block diagram illustrating an embodiment of
blockchain smart contracts utilized to implement a name
service on a blockchain. In some embodiments, the shown
blockchain smart contracts are executed by one or more
networked computers implementing a distributed block-
chain (e.g., one or more computers of blockchain 908 of
FIG. 9). Two different types of smart contracts utilized for
the name service include a registry smart contract and a
resolver smart contract. These smart contracts may be
deployed on the Ethereum open-source blockchain but may
be deployed in other blockchains in various different
embodiments. The registry smart contract can function to
map each registered domain to an owner account address
and a specific corresponding resolver smart contract that can
be used to resolve a name identifier of the domain to a target

20

25

30

35

40

45

50

55

60

65

4

record (e.g., IP address, cryptocurrency address, etc.). By
separating the registry functionality and resolution function-
ality into different smart contracts, different types of resolver
contracts can be linked to a domain, allowing an owner to
either use a standard resolver smart contract or a custom
resolver smart contract. Multiple different domains of the
registry smart contract can point to the same resolver smart
contract.

In the example diagram 100 shown in FIG. 1, registry
smart contract 102 stores entries associated with three
domains. Each of these domains is associated with a non-
fungible token stored on a blockchain and associate together
a name identifier of each domain to an owner account
address and an address of a resolver smart contract that is to
be used to resolve the name identifier of the domain. First,
two domains of registry smart contract 102 reference the
same standard resolver contract 104 that can resolve name
identifiers of a plurality of different domains. The third
shown domain of registry smart contract 102 references a
different custom resolver contract 106 that may function
differently from resolver contract 104 in resolving its asso-
ciated domain(s). Each resolver smart contract includes
records for one or more different domains and specifies how
and what the name identifier of each domain is to be
resolved to corresponding target identifier(s). A single name
identifier of one domain may map to a plurality of different
target identifiers that are of different types. For example,
“alice.crypto” name identifier may resolve to an IP address
when requested via a web browser and may resolve to a
cryptocurrency address when used as a payment target.

FIG. 2 is a block diagram illustrating additional details of
an embodiment of an implementation of blockchain smart
contracts of a decentralized name service. In some embodi-
ments, the shown blockchain smart contracts are executed
by one or more networked computers implementing a dis-
tributed blockchain (e.g., one or more computers of block-
chain 908 of FIG. 9). As shown in diagram 200, registry
smart contract 202 defines and manages ownership of
domains on the blockchain. For example, it defines owner-
ship rules, how new domains are created and transferred,
manages the non-fungible token (e.g., ERC-721 token)
representing each domain, and stores metadata of domains
on the blockchain. Each domain created and managed via
registry smart contract 202 is associated with its unique
non-fungible token and domain record. In some embodi-
ments, the domain record for a domain stores an account
address of the owner of the domain (e.g., user account
address), an identifier (e.g., address) of a resolver smart
contract assigned to resolve the domain, an optional address
of another approved user allowed to manage the specific
domain on behalf of the owner, and an identifier of the
domain (e.g., hashed version of the name of the domain
allowing users to reference the domain record by hashing the
name of the domain to obtain the hash that can be used as
an identifier of the name of the domain). Users can invoke
a program function of registry smart contract 202 to read,
modify, and/or manage a domain record of registry smart
contract 202.

In the event an owner desires to allow another account to
manage every domain owned by the user (e.g., instead of
just individual domains), the owner is able to add the
account address of another user as an operator in a user
record of the owner stored by registry smart contract 202.
The added user now becomes that operator for the owner and
is able to access and manage every domain of the owner.
More than one authorized operator user can be added to the
user record of a particular owner. The owner, the approved

US 11,558,344 B1

5

user, and the authorized operator user of a domain are able
to invoke a management function call of registry smart
contract 202 to transfer domain ownership, set a new asso-
ciated resolver smart contract, mint a new subdomain, or
destroy the domain. Only the owner account is able to
invoke a program function of registry smart contract 202 to
add or remove the approved user and the authorized opera-
tor.

Each domain of the registry smart contract identifies a
corresponding associated resolver smart contract that is used
for resolving domains and storing domain records. Using
this separate resolver smart contract, domain owners and
authorized users can store target records for the name
identifier of a domain for resolution (e.g., cryptocurrency
addresses, chat IDs, and IPFS hashes for decentralized web
webpages, etc.). For example, the resolver smart contract
stores in a blockchain the target records of one or more
domains and a program function of the registry smart
contract is able to be invoked to update a target record or
obtain a target record for a domain. Thus, a user is able to
use registry smart contract 202 to look up an address of a
resolver smart contract for a name of a domain and request
to this resolver smart contract a resolution of the name of the
domain. A domain of registry smart contract 202 is able to
point to any resolver smart contract whether it be a standard/
default resolver smart contract (e.g., smart contract 204) that
is available to use as a default or a custom resolver smart
contract (e.g., smart contract 206) that a user is able to
customize and deploy to perform any custom functionality
as desired. For example, a smart contract can be pro-
grammed to even invoke another smart contract.

A single resolver smart contract may be able to manage
and handle resolution of multiple different domains. Default
resolver smart contract 204 includes a different preset for
different domains and each preset holds records for the
domain. For example, the records inside the resolver smart
contract are stored as a nested mapping from Domain Token
ID—Preset ID—=Key—Value. This nested structure allows
users to configure domains on the un-enumerable Ethereum
mappings (e.g., it is expensive and unreliable to store an
enumerable data structure on Ethereum). This allows an
authorized user to change the preset associated with a
domain to link an entirely different set of records to the
domain.

The same name of a domain is able to be resolved into
multiple different target records of different types. For
example, a request to resolve a name of a domain identifies
a desired target identifier or action type and the resolver
smart contract looks up and returns a target identifier/action
of'a particular type among many different types stored by the
resolver smart contract for the same domain. Thus resolver
smart contract 204 stores in its records for a particular
domain, key-value pairs of target identifier/action type keys
and target identifier values, allowing the resolver smart
contract to effectively map a domain (e.g., hash of a name
of the domain) to key-value dictionaries of records.

An example of a list of record types able to be stored and
returned/performed by a resolver smart contract includes: a
cryptocurrency account address, a preferred browser proto-
col, a browser redirect URL (e.g., allowing redirection at the
name service level), a decentralized web record, an IPFS
network content hash, a swarm network content hash, a web
Domain Name System (DNS) record, a default DNS time-
to-live (TTL) setting, a DNS Canonical Name (CNAME), an
1P address, a deprecated record, an account username, a chat
user identifier, a social network user identifier, or any
communication user identifier.

20

25

30

35

40

45

50

55

60

65

6

In some embodiments, the name service does not prohibit
an authorized user from assigning any record of a domain to
any value. However, a list of known standard records is
defined to allow standard interpretation by clients. In some
embodiments, standard record types include:

crypto.*—Records related to crypto payments

dns.*—DNS resolution records

dweb.*—Resolution records related to distributed content

network protocols

browser.*—Resolution configuration/preference records

for web browser

The name service allows a human-readable name to be used
instead of a destination address for a cryptocurrency pay-
ment. Cryptocurrency wallets that use this feature can
resolve a domain to an underlying cryptocurrency address in
the same way a browser resolves a domain to an IP address.
Cryptocurrency addresses are stored in the resolver smart
contract within the crypto.* standard namespace of the
domain. Each currency address is stored as a
“crypto.<TICKER>.address” record. For example, a Bitcoin
address is stored in “crypto.BTC.address.” Addresses are
stored in plain text format according to an address space
standard established by each currency. The currency’s
namespace can contain additional currency-specific attri-
butes to facilitate payment delivery.

FIG. 3 is a flowchart illustrating an embodiment of a
process for managing a domain of a blockchain-based name
service. In some embodiments, at least a portion of the
process of FIG. 3 is implemented on management server(s)
(e.g., one or more servers of server(s) 904 of FIG. 9)
providing a service to manage blockchain-based name ser-
vice executing on distributed computers of a blockchain. In
some embodiments, at least a portion of the process of FIG.
3 is implemented on one or more networked computers
implementing a distributed blockchain (e.g., one or more
computers of blockchain 908 of FIG. 9). An example of a
smart contract that is used to execute the process of FIG. 3
is registry smart contract 102 and/or 202 of FIGS. 1 and 2.

At 302, a request specifying a management action to be
performed is received. In some embodiments, the request is
made to a registry smart contract by a requester by perform-
ing a program function call to an address of the registry
smart contract on a blockchain. The management action may
be one or more of the following: transfer a domain to a new
owner, set a resolver contract for a domain, create a new
subdomain for the domain, remove/burn a domain, add or
remove an approved account that can control the domain, or
add or remove an operator account for an owner that can
control every domain owned by the owner (e.g., the request
is for an owner account rather than only for a specific
domain). The request identifies the domain via a hash
identifier (e.g., serves as the identifier of the non-fungible
token representing the domain). The hash identifier is a more
storage efficient representation of the name of the domain
and the name of the domain can be easily converted to a hash
identifier using a hash function.

At 304, it is determined whether the request specifying the
management action is authorized. The request is authorized
to be provided by an owner of a domain, an approved
alternative account specified for the domain (e.g., specified
using the registry smart contract), or an operator account
specified (e.g., using the registry smart contract) to be
allowed to control every domain owned by the owner. In
order to prove that the user account that provided the request
is authentic, the user account can sign the request using a
private cryptographic key of the user account and this
signature is verified using a public key of the user account

US 11,558,344 B1

7

to authenticate the user account. If the authenticated user
account is an owner, an approved account, or an operator of
the domain according to the blockchain record of the reg-
istry smart contract, it is determined that the request is
authorized. If the account that provided the request cannot
be authenticated or the authenticated user account is not
authorized for the domain, the request is not authorized.

In some embodiments, an authorized account is able to
provide temporary authorization on a per management
action transaction level by signing a request message for
another account that can provide the request message for
later execution when presented. For example, to grant tem-
porary management authority on a per request level via a
meta-transaction, an owner, an approved account, or an
operator for a domain is able to sign a request using its
private cryptographic key and provide it to another user/
account that will issue the request for execution when
desired. This allows the authorized management of the
meta-transaction to be asynchronously executed when
desired by the other user/account. In the event the received
request is specified as a meta-transaction, the request
includes the signature of the authorized account of the
domain of the request (different from the account that
provided the request) and this signature is verified to ensure
it is authentic. If it is authentic and the account that signed
it is an owner, an approved account, or an operator for the
domain, it is determined that the request is authorized.
Otherwise, the meta-transaction request is not authorized.
Additional details on meta-transactions are discussed later in
the specification in conjunction with FIG. 5.

At 306, the management action is allowed to be per-
formed if the request is determined to be authorized. For
example, the domain of the request is transferred to a new
owner, a resolver contract is set for the domain, a subdomain
is created for the domain, the domain is deleted/burned, an
approved account that can control the domain is added or
removed, or an operator account for an owner that can
control every domain owned by the owner is added or
removed.

FIG. 4 is a flowchart illustrating an embodiment of a
process for updating target records of a domain managed
using a blockchain-based name service. In some embodi-
ments, at least a portion of the process of FIG. 4 is
implemented on one or more networked computers imple-
menting a distributed blockchain (e.g., one or more com-
puters of blockchain 908 of FIG. 9). In some embodiments,
at least a portion of the process of FIG. 4 is implemented on
management server(s) (e.g., one or more servers of server(s)
904 of FIG. 9) providing a service to manage blockchain-
based name service executing on distributed computers of a
blockchain. An example of a smart contract that is used to
execute the process of FIG. 4 is resolver smart contract 104
and/or 204 of FIGS. 1 and 2.

At 402, a request to update for a domain, a target record
of a specified type is received. In some embodiments, the
request is made to a resolver smart contract of the domain by
a requester by performing a program function call to an
address of the resolver smart contract on a blockchain. In
some embodiments, the resolver smart contract for the
domain is identified by requesting an address of the resolver
smart contract of the domain to a registry smart contract. The
request to update a target record identifies the domain via a
hash identifier of the name of the domain (e.g., serves as the
identifier of the non-fungible token representing the
domain).

The same name of a domain is able to be resolved into
multiple different target records of different types. For

20

25

30

35

40

45

50

55

60

65

8

example, a request to resolve a name of a domain identifies
a desired target identifier or action type and the resolver
smart contract is to look up and return a target identifier/
action of a particular type among many different types stored
by the resolver smart contract for the same domain. Thus the
resolver smart contract is able to store in its records for the
particular domain, key-value pairs of target record type keys
and target identifier values, allowing the resolver smart
contract to effectively map the domain (e.g., hash of a name
of the domain) to key-value dictionaries of records. The
received request may specify a command to add, modify, or
delete the target record of the domain using a target record
type (e.g., key) and/or a corresponding data/identifier (e.g.,
value) specified in the request.

In response to the request, it is determined whether the
request is authorized. The request is authorized to be pro-
vided by an owner of a domain, an approved alternative
account specified for the domain (e.g., specified using the
registry smart contract), or an operator account specified
(e.g., using the registry smart contract) to be allowed to
control every domain owned by the owner. In order to prove
that the user account that provided the request is authentic,
the user account can authenticate the request using a private
cryptographic key of the user account and this signature is
verified using a public key of the user account to authenti-
cate the user account. In some embodiments, because the
authorized account information is stored in the separate
registry smart contract, the registry smart contract is con-
sulted to determine if the authenticated user account is an
owner, an approved account, or an operator of the domain
according to the blockchain record of the registry smart
contract. If the authenticated user account is an authorized
user account, it is determined that the request is authorized.
If the account that provided the request cannot be authen-
ticated or the authenticated user account is not authorized for
the domain, the request is not authorized and the request is
rejected.

In some embodiments, the received request is specified as
a meta-transaction and the request includes the signature of
the authorized account of the domain of the request (differ-
ent from the account that provided the request) and this
signature is verified to ensure it is authentic. If it is authentic
and the account that signed it is an owner, an approved
account, or an operator for the domain, it is determined that
the request is authorized. Otherwise, the meta-transaction
request is not authorized. Additional details on meta-trans-
actions are discussed later in the specification in conjunction
with FIG. 5.

At 404, a blockchain of a resolver smart contract is
updated to associate the target record of the specified type to
the domain. A single resolver smart contract may be able to
manage and handle resolution of multiple different domains
and the resolver smart contract includes a different preset for
different domains and each preset holds records for the
domain. For example, the records inside the resolver smart
contract are stored as a nested mapping from Domain Token
ID—Preset ID—=Key—Value. This nested structure allows
users to configure domains on the un-enumerable Ethereum
mappings (e.g., it is expensive and unreliable to store an
enumerable data structure on Ethereum), allowing an autho-
rized user to change the preset associated with a domain to
link an entirely different set of records to the domain. Using
the token identifier of the domain included in a request, the
resolver smart contract identifies the corresponding preset
and the type and value of the target record (e.g., key/value
pair) are updated (e.g., added, removed, or modified) under
the identified preset.

US 11,558,344 B1

9

An example of a list of record types able to be updated by
the resolver smart contract is as follows: a cryptocurrency
account address, a preferred browser protocol, a browser
redirect URL (e.g., allowing redirection at the name service
level), a decentralized web record, an IPFS network content
hash, a swarm network content hash, a web DNS record, a
default TTL setting, a DNS CNAME, an IP address, a
deprecated record, an account username, a chat user iden-
tifier, a social network user identifier, or any communication
user identifier.

FIG. 5 is a flow diagram illustrating an embodiment of
performing a meta-transaction for a domain managed using
a blockchain-based name service. Examples of the meta-
transaction include the request to the registry smart contract
in 302 specifying a management action to be performed and
the request to the resolver smart contract in 402 to update for
the domain, a target record of a specified type.

In some embodiments, an authorized account for a
domain is able to provide authorization on a per manage-
ment transaction level by signing the request that can be
invoked by another account when desired. For example, to
grant temporary management authority on a per request
level via a meta-transaction, an owner, an approved account,
or an operator for a domain is able to sign a request using its
private cryptographic key and provide to another user/
account that will provide the request for execution when
desired. This allows the authorized management of the
meta-transaction to be asynchronously executed when
desired by the other user/account. In the event the received
request is specified as a meta-transaction, the request
includes the signature of the authorized account of the
domain of the request (different from the account that
provided the request) and this signature can be verified to
ensure it is authentic. If it is authentic and the account that
signed it is an owner, an approved account, or an operator for
the domain, it is determined that the request is authorized.
Otherwise, the meta-transaction request is not authorized.

In some embodiments, the registry smart contract and/or
the resolver smart contract includes special program func-
tions that can be called to indicate that the requested
transaction is a meta-transaction. For example, each man-
agement function of the smart contracts has a corresponding
meta-transaction version that allows as an argument/input to
provide a message signed by an authorized account of the
domain. This allows a third party to submit transactions on
behalf of an authorized account while still allowing the
authorized account to still manage its domain in a self-
custodial capacity

In transaction flow diagram 500 shown in FIG. 5, an
authorized account uses the front end (e.g., client 902 of
FIG. 9) to indicate, via user input 502 for a domain, a
transaction desired to be executed on behalf of the user. In
step 504, the front end generates the message specifying and
authorizing the meta-transaction. The message identifies the
desired action/function desired to be executed by the meta-
transaction as well as its parameters. The message is signed
using the cryptographic key (e.g., private key) of the autho-
rized account to prove its authenticity.

The message may include a domain based meta-transac-
tion nonce to prevent the message from being replayed (e.g.,
prevent it from being used more than once). The nonce
includes a transaction counter specifically tracked for each
domain/token. This prevents replay attacks where a transfer
of a token can be replayed over and over to continually
revert the state of the name back to a previous state. The
nonce counter is incremented by one each time a state
transition happens to a token. Domain token-based nonces

20

25

30

35

40

45

50

55

60

65

10

can be also used to prevent mis-ordering of transactions. For
example, this prevents front running non-fungible assets and
enables secure transaction batching.

The generated message is included in a transaction
request and sent in 506 to the server (e.g., management
server(s) 904 of FIG. 9) of the third-party that will be
submitting the meta-transaction on behalf of the authorized
account of the domain. The server can hold this meta-
transaction until later when it desires to execute the trans-
action by submitting to the appropriate blockchain (e.g.,
blockchain 908 of FIG. 9) smart contract in 508. This
request by the server includes the message signed by the
authorized account of the domain and is also signed by the
third-party requester submitting the meta-transaction using
its cryptographic key to generate its classical signature
typically submitted to the blockchain to prove its authen-
ticity.

The blockchain smart contract then checks the authoriza-
tion to execute the meta-transaction in 510 by verifying that
the included message signature purported to be signed by the
authorized account (e.g., not the signature of the submitter
of the request in 508) was actually signed by an authorized
account identified in the record of the registry smart contract
for the domain of the request. Once the message signature is
verified, the requested transaction is executed in 512 and a
confirmation of the execution is passed back in 514 and 516.

FIG. 6 is a flowchart illustrating an embodiment of a
process for resolving a domain managed using a blockchain-
based name service. In some embodiments, at least a portion
of the process of FIG. 6 is implemented on one or more
networked computers implementing a distributed block-
chain (e.g., one or more computers of blockchain 908 of
FIG. 9). In some embodiments, at least a portion of the
process of FIG. 6 is implemented on management server(s)
(e.g., one or more servers of server(s) 904 of FIG. 9)
providing a service to manage blockchain-based name ser-
vice executing on distributed computers of a blockchain. An
example of a smart contract that is used to execute the
process of FIG. 6 is resolver smart contract 104 and/or 204
of FIGS. 1 and 2.

At 602, a request to resolve a name of a domain into a
target record is received. In some embodiments, the request
is made to a resolver smart contract of the domain by a
requester by performing a program function call to an
address of the resolver smart contract on a blockchain. In
some embodiments, the resolver smart contract for the
domain is identified by requesting an address of the resolver
smart contract of the domain to a registry smart contract. The
request may identify the name of the domain via a hash
identifier determined by hashing the name using a hash
function. The request may also identify the type of target
record desired to be obtained. For example, the same name
of a domain is able to be resolved into multiple different
target records of different types, and the request identifies
one of these types desired to be obtained.

At 604, the requested target record is obtained and
returned in response to the request. For example, the
resolver smart contract obtains the target record of a speci-
fied type for the domain from its blockchain storage and
returns the target record.

In some embodiments, because a single resolver smart
contract may be able to manage and handle resolution of
multiple different domains, the resolver smart contract
includes a different preset for different domains and each
preset holds records for the domain. For example, the
records inside the resolver smart contract are stored as a
nested mapping from Domain Token ID—Preset ID—Key-

US 11,558,344 B1

11

—Value. This nested structure allows users to configure
domains on the un-enumerable Ethereum mappings (e.g., it
is expensive and unreliable to store an enumerable data
structure on FEthereum), allowing an authorized user to
change the preset associated with a domain to link an
entirely different set of records to the domain. Using the
token identifier of the domain included in a request, the
resolver smart contract identifies the corresponding preset of
the domain, obtains the target record of the type (e.g., key of
the record) specified by the request, and returns the value of
the record. Examples of the return target record returned
include: a cryptocurrency account address, a preferred
browser protocol, a browser redirect URL (e.g., allowing
redirection at the name service level), a decentralized web
record, an IPFS network content hash, a swarm network
content hash, a web DNS record, a default TTL setting, a
DNS CNAME, an IP address, a deprecated record, an
account username, a chat user identifier, a social network
user identifier, or any communication user identifier.

FIG. 7 is a flow diagram illustrating an embodiment of
resolving a name identifier using a blockchain-based name
service for a cryptocurrency transaction. An example of a
smart contract that is used to execute the flow of FIG. 7 is
resolver smart contract 104 and/or 204 of FIGS. 1 and 2.

One way to integrate with the name service is through
resolution of the name of the domain into a cryptocurrency
address. This process converts a human-readable name like
“brad.crypto” to the cryptocurrency addresses that the name
service stores in its blockchain. For example, a user can send
a bitcoin to “brad.crypto” and it will go to Brad’s bitcoin
address. A user can also send an Ethereum coin to
“brad.crypto” and it will go to Brad’s Ethereum address.

In the example shown in diagram 700, the application
retrieves a domain’s records through a resolver smart con-
tract deployed on the blockchain (e.g., via the Ethereum or
Zilliga blockchains). In the shown diagram, an ETH cryp-
tocurrency token is being sent to “example.crypto.” The
application sends those two parameters to the resolver smart
contract on the Ethereum blockchain and it returns the
record stored under “crypto.ETH.address” for that domain.
This address can be used to complete the ETH cryptocur-
rency token transfer.

FIG. 8 is a flow diagram illustrating an embodiment of
using a proxy reader smart contract to resolve a target record
of a domain managed using a blockchain-based name ser-
vice. In some embodiments, at least a portion of the process
of FIG. 8 is implemented on one or more networked
computers implementing a distributed blockchain (e.g., one
or more computers of blockchain 908 of FIG. 9). In the
previously described examples of the registry smart contract
(e.g., registry smart contract 102 and/or 202 of FIGS. 1 and
2) and the resolver smart contract (e.g., resolver smart
contract 104 and/or 204 of FIGS. 1 and 2), an application/
user desiring to resolve a name of the domain made a first
program function call to the registry smart contract to obtain
the address of the resolver smart contract for the domain and
then made a second function call to the resolver smart
contract to obtain the target domain record. However, mak-
ing two different function calls to two different smart con-
tracts adds complexity to the name service that is undesir-
able for many users. In order to simplify the resolution of the
domain, a proxy reader smart contract that enables a single
function call to handle this complexity for the user is shown
in diagram 800.

The proxy reader smart contract receives request 802 to
resolve a name of a domain into a target record (e.g., the
request received in 502 of FIG. 5). Request 802 may include

20

25

30

35

40

45

50

55

60

65

12

a hash of the name of the domain (e.g., Token ID) and an
identifier of a type of target record desired to be obtained.
The proxy reader smart contract acts as a proxy to make the
appropriate calls to both the registry smart contract and the
corresponding resolver smart contract, allowing the
requester to make a single call that returns the desired
domain record. The proxy reader smart contract makes call
804 to the registry smart contract to request the address of
the resolver smart contract corresponding to the domain
(e.g., corresponding to the Token ID of the domain). The
registry smart contract returns response 806 providing the
corresponding resolver smart contract address. The proxy
reader smart contract makes call 808 to the obtained resolver
smart contract address to request the desired record of the
domain. The resolver smart contract returns response 810
that provides the desired record. This obtained record is then
able to be provided by the proxy reader smart contract to the
requester in response to request 802.

FIG. 9 is a block diagram illustrating an embodiment of
a blockchain-based name service environment. Client 902
includes any computer using the blockchain-based name
service. For example, client 902 requests resolution of a
name of a domain of the blockchain-based name service to
a target record, updates a target record for a name of a
domain of the blockchain-based name service, and/or per-
forms any management action associated with a domain of
the blockchain-based name service. Any number of client
902 may exist. A request sent by client 902 is provided to
management server(s) 904 and/or blockchain 908 via com-
puter network 906. Management server(s) 904 includes one
or more servers providing a service to manage the block-
chain-based name service executing on blockchain 908. For
example, rather than directly managing the blockchain-
based name service on blockchain 908, an owner of a
domain uses a service provided by management server(s)
904 to assist the owner by performing management actions
on blockchain 908 for the owner. The owner may grant
management server(s) 904 authorization to manage its
domain(s) (e.g., via as an approved user, as an operator, or
per management action meta-transaction). This allows a
management action request received at management
server(s) 904 from client 904 to be initiated by management
server(s) 904 on blockchain 908. Blockchain 908 includes
one or more distributed network(s) of servers and computers
implementing a crypto blockchain (e.g., Ethereum block-
chain) that enable smart contracts of the blockchain-based
name service to be executed.

FIG. 10 is a functional diagram illustrating a programmed
computer system for using, managing, or executing a block-
chain-based name service in accordance with some embodi-
ments. As will be apparent, other computer system archi-
tectures and configurations can be used to use, manage, or
execute the blockchain-based name service. Examples of
computer system 1000 includes client 902, one or more
computers included in management server(s) 904, or one or
more computers included in blockchain 908 of FIG. 9.
Computer system 1000, which includes various subsystems
as described below, includes at least one microprocessor
subsystem (also referred to as a processor or a central
processing unit (CPU)) 1002. For example, processor 1002
can be implemented by a single-chip processor or by mul-
tiple processors. In some embodiments, processor 1002 is a
general purpose digital processor that controls the operation
of the computer system 1000. Using instructions retrieved
from memory 1010, the processor 1002 controls the recep-
tion and manipulation of input data, and the output and
display of data on output devices (e.g., display 1018).

US 11,558,344 B1

13

Processor 1002 is coupled bi-directionally with memory
1010, which can include a first primary storage, typically a
random access memory (RAM), and a second primary
storage area, typically a read-only memory (ROM). As is
well known in the art, primary storage can be used as a
general storage area and as scratch-pad memory, and can
also be used to store input data and processed data. Primary
storage can also store programming instructions and data, in
the form of data objects and text objects, in addition to other
data and instructions for processes operating on processor
1002. Also as is well known in the art, primary storage
typically includes basic operating instructions, program
code, data and objects used by the processor 1002 to perform
its functions (e.g., programmed instructions). For example,
memory 1010 can include any suitable computer-readable
storage media, described below, depending on whether, for
example, data access needs to be bi-directional or unidirec-
tional. For example, processor 1002 can also directly and
very rapidly retrieve and store frequently needed data in a
cache memory (not shown).

A removable mass storage device 1012 provides addi-
tional data storage capacity for the computer system 1000,
and is coupled either bi-directionally (read/write) or unidi-
rectionally (read only) to processor 1002. For example,
storage 1012 can also include computer-readable media such
as magnetic tape, flash memory, PC-CARDS, portable mass
storage devices, holographic storage devices, and other
storage devices. A fixed mass storage 1020 can also, for
example, provide additional data storage capacity. The most
common example of mass storage 1020 is a hard disk drive.
Mass storage 1012, 1020 generally store additional pro-
gramming instructions, data, and the like that typically are
not in active use by the processor 1002. It will be appreciated
that the information retained within mass storage 1012 and
1020 can be incorporated, if needed, in standard fashion as
part of memory 1010 (e.g., RAM) as virtual memory.

In addition to providing processor 1002 access to storage
subsystems, bus 1014 can also be used to provide access to
other subsystems and devices. As shown, these can include
a display monitor 1018, a network interface 1016, a key-
board 1004, and a pointing device 1006, as well as an
auxiliary input/output device interface, a sound card, speak-
ers, and other subsystems as needed. For example, the
pointing device 1006 can be a mouse, stylus, track ball, or
tablet, and is useful for interacting with a graphical user
interface.

The network interface 1016 allows processor 1002 to be
coupled to another computer, computer network, or tele-
communications network using a network connection as
shown. For example, through the network interface 1016,
the processor 1002 can receive information (e.g., data
objects or program instructions) from another network or
output information to another network in the course of
performing method/process steps. Information, often repre-
sented as a sequence of instructions to be executed on a
processor, can be received from and outputted to another
network. An interface card or similar device and appropriate
software implemented by (e.g., executed/performed on)
processor 1002 can be used to connect the computer system
1000 to an external network and transfer data according to
standard protocols. For example, various process embodi-
ments disclosed herein can be executed on processor 1002,
or can be performed across a network such as the Internet,
intranet networks, or local area networks, in conjunction
with a remote processor that shares a portion of the pro-

20

25

30

35

40

45

50

55

60

65

14

cessing. Additional mass storage devices (not shown) can
also be connected to processor 1002 through network inter-
face 1016.

An auxiliary /O device interface (not shown) can be used
in conjunction with computer system 1000. The auxiliary
1/O device interface can include general and customized
interfaces that allow the processor 1002 to send and, more
typically, receive data from other devices such as micro-
phones, touch-sensitive displays, transducer card readers,
tape readers, voice or handwriting recognizers, biometrics
readers, cameras, portable mass storage devices, and other
computers.

In addition, various embodiments disclosed herein further
relate to computer storage products with a computer read-
able medium that includes program code for performing
various computer-implemented operations. The computer-
readable medium is any data storage device that can store
data which can thereafter be read by a computer system.
Examples of computer-readable media include, but are not
limited to, all the media mentioned above: magnetic media
such as hard disks, floppy disks, and magnetic tape; optical
media such as CD-ROM disks; magneto-optical media such
as optical disks; and specially configured hardware devices
such as application-specific integrated circuits (ASICs),
programmable logic devices (PLDs), and ROM and RAM
devices. Examples of program code include both machine
code, as produced, for example, by a compiler, or files
containing higher level code (e.g., script) that can be
executed using an interpreter.

The computer system shown in FIG. 10 is but an example
of a computer system suitable for use with the various
embodiments disclosed herein. Other computer systems
suitable for such use can include additional or fewer sub-
systems. In addition, bus 1014 is illustrative of any inter-
connection scheme serving to link the subsystems. Other
computer architectures having different configurations of
subsystems can also be utilized.

FIG. 11 is a block diagram illustrating an embodiment of
a system for resolving a name of a domain of a decentralized
blockchain-based name service. Client 1102 includes web
browser 1104. A user uses web browser 1104 executing on
client 1102 (e.g., computer, mobile device, etc.) to request
content referenced by a name identifier including a domain
name. For example, the name identifier includes a human-
friendly hostname/URL (Uniform Resource Locator) that is
to be resolved to obtain a target identifier (e.g., IP address)
that is to be used to request the desired content. Traditional
domains that are not blockchain based are typically resolved
by web browser 1104 by contacting a Domain Name System
(DNS) server to obtain a DNS record corresponding to a
domain name. However in various embodiments, a name of
a domain of a blockchain-based name service is to be
resolved by a lookup of a corresponding record on a block-
chain. For example, the process of FIG. 6 is used to request
and obtain target records for a domain of a blockchain-based
name service.

In some embodiments, web browser 1104 has been spe-
cifically configured to natively handle resolution of a name
of'a domain of a blockchain-based name service by natively
performing a lookup of a corresponding record managed on
a blockchain. For example, when web browser 1104 detects
that a provided content location identifier (e.g., URL) for a
requested content includes a name of a domain of a block-
chain-based name service, web browser 1104 contacts
blockchain 1106 of the blockchain-based name service (e.g.,
via a smart contract) via network 1100 to obtain one or more
records corresponding to the domain of the provided content

US 11,558,344 B1

15

location identifier. In various embodiments, the record(s)
provide configuration information (e.g., preferred protocol),
DNS record(s), target IP address, redirection information, or
any other stored information that can be used to obtain
content referenced using the domain of the blockchain-based
name service. FIG. 2 and related descriptions detail an
embodiment of an implementation of blockchain smart
contracts of a decentralized blockchain-based name service.

In some embodiments, web browser 1104 is unable to
natively handle resolution of a name of a domain of a
blockchain-based name service and a browser extension or
a browser plugin that has been installed on web browser
1104 is utilized to handle the resolution of the name of the
domain of the blockchain-based name service. For example,
when the plugin detects that a provided content location
identifier for a requested content includes a name of a
domain of a blockchain-based name service, the plugin of
web browser 1104 contacts blockchain 1106 of the block-
chain-based name service (e.g., via a smart contract) via
network 1100 to obtain one or more records corresponding
to the domain of the provided content location identifier. In
various embodiments, the record(s) provide configuration
information (e.g., preferred protocol), DNS record(s), target
IP address, redirection information, or any other stored
information that can be used to obtain content referenced
using the domain of the blockchain-based name service.
FIG. 2 and related descriptions detail an embodiment of an
implementation of blockchain smart contracts of a decen-
tralized blockchain-based name service.

In some embodiments, rather than requiring native han-
dling, browser extension, or a plugin-based resolution of a
name of a domain of a blockchain-based name service, the
resolution is performed via a remote server/gateway. For
example, regardless of whether a domain to be resolved is a
traditional DNS domain or a domain of a blockchain-based
name service, attempts to perform resolution of a name of a
domain of a blockchain-based name service are performed
by contacting a remote gateway/server that will perform the
resolution for the web browser. For example, browser 1104
contacts blockchain domain supporting DNS gateway 1108
to resolve a name of a domain included in a content location
identifier (e.g., URL). DNS gateway 1108 supports resolu-
tions of both traditional DNS domains and domains of a
blockchain-based name service, and it is configured to
determine whether a name of the domain to be resolved is a
domain of a blockchain-based name service (e.g., based on
a top level domain identifier of the domain to be resolved).
For example, the DNS gateway is configured to access
records managed on blockchain 1106 for the domain and
provide resolution records. Even if the domain to be
resolved is a blockchain-based domain, the records may be
provided in conformance with the traditional DNS standard
protocol to the web browser that only understands traditional
DNS responses. For example, from the perspective of a web
browser, DNS gateway 1108 functions as a traditional DNS
gateway/server despite it being extended to support block-
chain-based domains. In the event the domain is a domain of
a blockchain-based name service, DNS gateway 1108 con-
tacts blockchain 1106 of the blockchain-based name service
(e.g., via a smart contract) via network 1100 to obtain one or
more records corresponding to the domain to be resolved. In
various embodiments, the record(s) provide configuration
information (e.g., preferred protocol), DNS record, target IP
address, redirection information, or any other stored infor-
mation that can be used to obtain content referenced using
the domain of the blockchain-based name service. The
resolution response is returned to browser 1104 by DNS

20

25

30

35

40

45

50

55

60

65

16

gateway 1108 based on the obtained record(s) from the
blockchain. If it is determined that the domain is not a
domain of a blockchain-based name service but a standard
domain (e.g., managed by ICANN) that is not a blockchain-
based domain, DNS gateway 1108 performs the resolution
as would be performed by a typical DNS server/gateway
without using a blockchain.

In some embodiments, one or more of the record(s)
obtained from the blockchain for domain resolution specify
a decentralized web content identifier that can be used to
obtain content from decentralized content network 1112. For
example, one of the record(s) obtained from the blockchain
includes an InterPlanetary File System (IPFS) content hash
identifier. Decentralized content network 1112 includes one
or more servers and/or devices that function as peer-to-peer
networks to provide content in a distributed manner. In some
embodiments, one or more of the record(s) obtained from
the blockchain for domain resolution include an address of
a gateway/server (e.g., decentralized web gateway 1110) that
functions as a proxy to obtain and provide requested decen-
tralized web content for a requester that does not directly
support a decentralized web protocol. For example, web
browser 1104 may not support a decentralized web content
protocol such as IPFS, and the web browser is provided in
a record returned from resolving a domain referencing
decentralized web content, a redirect address to decentral-
ized web gateway 1110. When decentralized web gateway
1110 is contacted via the redirect address, decentralized web
gateway 1110 can function as a proxy to contact decentral-
ized content network 1112 to obtain and provide the content
referenced by a decentralized web content hash identifier
included in a record obtained from the blockchain for the
domain. In effect, decentralized web gateway 1110 functions
as a middle proxy server that allows decentralized web
content to be requested and received by a requester utilizing
traditional requests/responses (e.g., HTTP requests/re-
sponses) not utilizing a decentralized web protocol.

Blockchain 1106 includes a network of computers, serv-
ers, or other devices that maintain a blockchain ledger and
execute smart contracts that maintain and execute the block-
chain-based name service. For example, Blockchain 1106
includes devices that maintain and execute the Ethereum
blockchain. Examples of use and management of the block-
chain have been described previously in the specification.

FIG. 12 is a flowchart illustrating an embodiment of a
process for resolving a name identifier. In some embodi-
ments, at least a portion of the process of FIG. 12 is
performed by web browser 1104 of FIG. 11. In some
embodiments, at least a portion of the process of FIG. 12 is
performed by a browser plugin and/or browser extension of
web browser 1104 of FIG. 11. In some embodiments, at least
a portion of the process of FIG. 12 is performed by DNS
gateway 1108 of FIG. 11.

At 1202, a request to resolve a name identifier of web
content is received. For example, a user inputs the name
identifier into an address bar of a web browser. In another
example, the name identifier is referenced by web content or
another program for retrieval of the web resource referenced
by the name identifier. In some embodiments, the request is
received by the native component of the web browser and/or
a plugin/extension of the web browser. In some embodi-
ments, the request is provided by a web browser and
received at a domain name resolution server/gateway (e.g.,
DNS gateway 1108). Examples of the web content include
a webpage, an image, program code, content referenced by
a webpage, or any other content able to be referenced and
obtained via the internet.

US 11,558,344 B1

17

At 1204, it is determined that a name of a domain included
in the name identifier is to be resolved using a blockchain.
While existing traditional DNS domains are to be resolved
using traditional DNS servers, certain domains are to be
resolved using the blockchain of a blockchain-based name
service. In some embodiments, the determination on
whether to resolve the name of the domain using a block-
chain is performed automatically based on a programmatic
analysis of its domain extension or top-level domain (e.g.,
letters at end of domain name after dot). In some embodi-
ments, there exists a predetermined list of one or more
specific domain extensions/top-level domains to be resolved
using a blockchain, and if the extension/top-level domain of
the name of the domain to be resolved matches an entry on
this list, it is determined that the name of the domain
included in the name identifier is to be resolved using a
blockchain. For example, extensions/top-level domains
“.crypto” and “.zil”, etc. are included in the list and if the
domain of the name identifier includes any of these top-level
domains, it is automatically determined to resolve it using a
blockchain. If the domain of the name identifier does not
include any of these top-level domains, it is automatically
determined to resolve it using traditional non-blockchain
based resolution (e.g., via traditional DNS resolution).

At 1206, a request is made to a smart contract of the
blockchain for one or more resolution records for the
domain, and at 1208, the requested record(s) are received.
For example a call is made to a function of the smart contract
to request resolution records of a specified domain.
Examples of the smart contract are shown in FIGS. 1 and 2.
In some embodiments, the request is made using the process
of FIG. 6. The smart contract includes self-executing code
that functions to implement an agreement deployed to store
state and execute code on the blockchain. This allows an
agreed upon contract code to execute in a distributed and
verifiable manner. The smart contracts of the decentralized
blockchain-based name service govern how domains are
created, managed, and utilized. For example, the smart
contract can be invoked to obtain one or more records that
can be used to resolve the domain of the name identifier to
obtain the corresponding web resource. In some embodi-
ments, when the request is made to the smart contract of the
blockchain, the smart contract returns the one or more
resolution records managed in the blockchain for the domain
of the name identifier to be resolved.

Examples of the resolution records include any traditional
DNS record (e.g., redirect address/URL of a redirect record,
IP address of a dns.A record, or any other record supported
by the DNS protocol), any decentralized web record (e.g.,
hash value of any supported decentralized web protocol),
and configuration record(s) (e.g., record specifying a list of
preferred protocols in a preferred order such that if multiple
protocols are supported by the destination of the resolved
domain, the protocol to be utilized is selected based on the
order of the list).

At 1210, the received one or more records are used to
resolve the name of the domain of the name identifier and
obtain the referenced web content. In some embodiments,
the names of the domain in the name identifier are replaced
with an IP address included in the record(s) and used to
request and obtain the web resource via the Internet. In some
embodiments, a redirect address included in the received
record(s) is used to perform a DNS redirection by requesting
content of the redirect address instead. In some embodi-
ments, a decentralized web content hash identifier included
in the received record(s) is used to request and obtain
decentralized web content from a distributed content net-

20

25

30

35

40

45

50

55

60

65

18

work. Preferences and configurations for requesting and
obtaining the referenced web content may be specified in the
received one or more records.

FIG. 13 is a flow diagram illustrating an embodiment of
a process for requesting and receiving decentralized web
(dWeb) content. An example of web browser 1302 is web
browser 1104 of FIG. 11. An example of blockchain 1304 is
blockchain 1106 of FIG. 11. An example of decentralized
content network 1306 is decentralized content network 1112
of FIG. 11.

In the example flow diagram shown, at 1312, a user
requests content referenced by a provided name identifier
“unstoppable.crypto.” This provided name identifier may
have been provided as a user input into the address bar of a
web browser. A native component or a plugin/extension
component of the web browser is configured to detect that
the “.crypto” portion of the name of the domain of the
provided name identifier is to be resolved using a blockchain
of a blockchain-based name service.

At 1314, a token version of the name of the domain of the
provided name identifier is calculated. For example, rather
than using the text version of the domain, a hash identifier
is calculated by hashing the text of the domain. The hash
identifier serves as the identifier of the non-fungible token
representing the domain and is a more storage efficient
representation of the name of the domain and the name of
the domain can be easily converted to a hash identifier using
a hash function.

At 1316, target records for the domain (identified by the
calculated hash) are requested from blockchain 1304 (e.g.,
blockchain of a blockchain-based name service able to
resolve the top-level domain of the domain). For example, a
request is sent to a smart contract of the blockchain request-
ing resolution records associated with resolving and access-
ing content associated with the domain of the name identi-
fier.

At 1318, the requested records are received. The received
records may include configuration record(s) as well as target
location/content records of the domain for any supported
protocol.

At 1320, the decentralized web content identifier is
extracted from the received records. For example, a decen-
tralized web content hash identifier for a decentralized web
protocol identified as supported from the received records is
obtained from the received records.

At 1324, decentralized web content identified by the
extracted decentralized web target content identifier is
requested from decentralized content network 1306. At
1326, the requested decentralized web content is received
from decentralized content network 1306.

FIG. 14 is a flow diagram illustrating an embodiment of
a process for requesting and receiving decentralized web
content via remote gateways. An example of web browser
1402 is web browser 1104 of FIG. 11. An example of DNS
gateway 1404 is DNS gateway 1108 of FIG. 11. An example
of decentralized web gateway 1406 is decentralized web
gateway 1110 of FIG. 11. An example of blockchain 1408 is
blockchain 1106 of FIG. 11. An example of decentralized
content network 1410 is decentralized content network 1112
of FIG. 11.

At 1412, browser 1402 requests DNS resolution of a
domain of a provided name identifier to DNS gateway 1404.
For example, when a user requests content referenced by a
provided name identifier “brave.crypto,” the name of the
domain included in the provided name identifier is to be
resolved. Web browser 1402 has not been configured to
directly handle blockchain-based domains and simply relies

US 11,558,344 B1

19

on its traditional DNS resolution flow by requesting its
resolution to DNS gateway 1404.

DNS gateway 1404 is configured to detect that the
“.crypto” portion of the domain of the provided name
identifier is to be resolved using a blockchain of a block-
chain-based name service. At 1414, a token version of the
name of the domain of the provided name identifier is
calculated. For example, rather than using the text version of
the name of the domain, a hash identifier is calculated by
hashing the text of the name of the domain. The hash
identifier serves as the identifier of the non-fungible token
representing the domain and is a more storage efficient
representation of the name of the domain and the name of
the domain can be easily converted to a hash identifier using
a hash function.

At 1416, target records for the domain (identified by the
calculated hash) are requested from blockchain 1408 (e.g.,
blockchain of a blockchain-based name service able to
resolve the top-level domain of the name identifier). For
example, a request is sent to a smart contract of the block-
chain requesting a list of records associated with resolving
and accessing content associated with the domain of the
name identifier (e.g., domain records).

At 1418, the requested records are received. The received
records may include configuration record(s) (e.g., including
preferred decentralized web protocol) and may also include
target location/content records of the domain for any sup-
ported protocol. The received records indicate that a decen-
tralized web content is referenced by the domain.

In some embodiments, it is determined whether the
browser that requested the resolution of the domain is able
to directly handle/access decentralized web content. If it is
determined that browser 1402 is unable to directly handle/
access decentralized web content, at 1420, a decentralized
web gateway IP address and decentralized web configura-
tions are obtained from the received records to allow the web
browser to access decentralized web content via decentral-
ized web gateway 1406. If it is determined that the browser
is able to directly handle/access decentralized web content,
a decentralized web content hash identifier included in the
received records may be returned directly to the browser to
allow it to directly contact an appropriate decentralized
content network to obtain the decentralized web content.

At 1422, a DNS response including an “A” response
record with an IP address of the decentralized web gateway
is provided in response to the request of 1412. In some
embodiments, the provided response also indicates a decen-
tralized content hash identifier extracted from the received
records.

At 1424, web browser 1402 contacts decentralized web
gateway 1406 using the received IP address to request
content referenced by the name identifier.

At 1426, a token version of the domain of the provided
name identifier is calculated. At 1428, target records for the
domain (identified by the calculated hash) are requested
from blockchain 1408 (e.g., blockchain of a blockchain-
based name service able to resolve the top-level domain of
the domain of the name identifier). For example, a request is
sent to a smart contract of the blockchain requesting a list of
records associated with resolving and accessing content
associated with the domain of the name identifier (e.g.,
resolution records for the domain). At 1430, the requested
records are received. The received records include a decen-
tralized web content hash identifier. In an alternative
embodiment, rather than performing 1426-1430, the decen-
tralized web target content identifier received in 1422 and
provided in association with the request of 1424 is utilized.

20

25

30

35

40

45

50

55

60

65

20

At 1432, decentralized web content identified by the
extracted decentralized web target content identifier is
requested to decentralized content network 1410. At 1434,
the requested decentralized web content is received at
decentralized web gateway 1406 from decentralized content
network 1410. This decentralized web content is stored at
gateway 1406 and at 1436 provided to browser 1402 via a
traditional Hypertext Transfer Protocol (HTTP) as a
response to the request of 1424.

FIG. 15 is a flowchart illustrating an embodiment for
handling protocol priority when performing domain resolu-
tion for a domain resolved using a blockchain of a block-
chain-based name service. In some embodiments, at least a
portion of the process of FIG. 15 is performed by browser
1104 and/or DNS gateway 1108 of FIG. 11. A name of the
domain can be resolved into any one of different targets for
different protocols that are supported. For example, the
domain can be resolved into an IP address if HTTP protocol
is to be utilized or the domain can be resolved into a
decentralized web content hash identifier if the decentralized
web protocol (e.g., IPFS) is to be utilized. In some embodi-
ments, the process of FIG. 15 can be utilized to select among
different domain resolution options.

At 1502, resolution record(s) for a name of a domain to
be resolved are obtained using a blockchain of a blockchain-
based name service. In some embodiments, the resolution
records include records received in 1208 of FIG. 12, 1318 of
FIG. 13, 1418 of FIG. 14, and/or 1430 of FIG. 14. For
example, the resolution records include records managed on
the blockchain for the specified domain for use when
resolving to a target identifier. The received resolution
record(s) may include configurations, preferences, and/or
one or more target records for one or more different proto-
cols.

At 1504, an ordered list of preferred protocols is deter-
mined using the received records. If the domain has been
specified in the blockchain records to support multiple
protocols, one of the protocols is to be selected for use. The
resolved target identifier for the domain will be the target
identifier specified for that protocol among the different
target identifiers specified for the different supported proto-
cols. One of the received configuration records may specify
an ordering of protocol preference such that the selected
protocol is the one with the highest preference (e.g., appears
in the list before another valid option) among protocols in
the list that have been configured to be supported for the
domain. In some embodiments, if the received records do
not specity a preferred ordering of protocol or specifies an
incomplete list, a default or modified preference ordering is
utilized. For example, if a preferred order is not specified,
the preferred order is [“bzz,” “ipfs,” “https,” “http,” “ftp”].
In some embodiments, one or more protocols associated
with decentralized web protocols but not specified in a
specified preference are added to the beginning (higher
priority) of a partially provided list or at the end of other
specified decentralized web protocols in the partially pro-
vided list. In some embodiments, “http” protocol is added to
the end (lower priority) of the partially provided list.

At 1506, each of the protocols in the ordered list is iterated
in the order of the list until a matching target identifier is
found. For example, there exists a different target identifier
record for each of any supported protocol of the domain, and
it is determined whether there exists a target identifier record
for the protocol in the list being iterated. If a target identifier
record has been defined for the protocol according to a
record in the received record(s) for the domain, it is deter-
mined that the matching target identifier has been found. If

US 11,558,344 B1

21

a target identifier record has not been defined for the
protocol in the received record(s), the iteration proceeds to
the next protocol in the order of the list.

At 1508, if a matching target content identifier has been
identified, it is determined to resolve the name of the domain
using the matching protocol. The matching target content
identifier is then returned for use in resolving and obtaining
reference content of the domain.

At 1510, if no matching target content identifier has been
identified after iterating through the entire ordered list of
protocols, the domain is redirected, if applicable. For
example, one of the received records may specify a redirect
address/identifier for the domain, and if the redirect address/
identifier exists, the domain is redirected by returning the
redirect address/identifier to allow a recipient to contact the
redirect address/identifier instead.

Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:

1. A method, comprising:

receiving a request to resolve a name of a domain of an

identifier of web content;

automatically determining that the name of the domain is

to be resolved using a blockchain;

determining an identifier of a non-fungible token corre-

sponding to the domain of the identifier of the web
content;

using the identifier of the non-fungible token to send a

request to a smart contract of the blockchain to obtain
one or more resolution records for the domain, wherein
the blockchain stores the non-fungible token associat-
ing the domain to an account address of an owner of the
domain;

receiving the one or more resolution records of the

domain; and

utilizing the received one or more resolution records to

resolve the name of the domain.

2. The method of claim 1, wherein the identifier of the
web content includes a Uniform Resource Locator (URL).

3. The method of claim 1, wherein the request is received
at a web browser.

4. The method of claim 1, wherein the request is received
at a Domain Name System (DNS) gateway configured to
handle resolution of domains of a blockchain-based name
service.

5. The method of claim 1, wherein determining that the
name of the domain is to be resolved using the blockchain
includes determining that a top-level domain included in the
name of the domain matches an entry in a list of domains to
be resolved using the blockchain.

6. The method of claim 1, wherein the determination that
the name of the domain is to be resolved using the block-
chain is performed using an extension of a web browser.

7. The method of claim 1, wherein the identifier of the
non-fungible token is calculated using a hash function.

8. The method of claim 1, wherein the one or more
resolution records include an Internet Protocol (IP) address.

9. The method of claim 1, wherein the one or more
resolution records include a redirect address.

10. The method of claim 1, wherein the one or more
resolution records include a decentralized web content hash
identifier.

20

25

30

35

40

45

50

55

60

65

22

11. The method of claim 1, wherein the one or more
resolution records include a plurality of target identifiers for
different protocols.

12. The method of claim 11, wherein utilizing the received
one or more resolution records to resolve the name of the
domain includes selecting one of the plurality of target
identifiers based on an ordered list of protocol preferences.

13. The method of claim 12, wherein the ordered list of
protocol preferences is at least in part specified in the one or
more resolution records received using the blockchain.

14. The method of claim 12, wherein selecting the one of
the plurality of target identifiers based on the ordered list of
protocol preferences includes evaluating each protocol
specified in an order of the ordered list to determine whether
there exists a specific target record for the protocol.

15. The method of claim 1, wherein utilizing the received
one or more resolution records to resolve the name of the
domain includes providing a response including at least a
portion of the one or more resolution records to a web
browser.

16. The method of claim 1, wherein utilizing the received
one or more resolution records to resolve the name of the
domain includes providing an identifier of a decentralized
web gateway.

17. The method of claim 16, wherein in response to a
request made to the decentralized web gateway using the
provided identifier of the decentralized web gateway, the
decentralized web gateway obtains from a decentralized
content network, decentralized web content referenced by a
decentralized web content hash value included in the one or
more resolution records of the domain, and stores and
provides the obtained decentralized web content.

18. The method of claim 17, wherein the decentralized
web gateway obtains the content referenced by the decen-
tralized web content hash value using a decentralized web
protocol but provides the obtained decentralized web con-
tent using a protocol that is not the decentralized web
protocol.

19. A system, comprising:

a processor configured to:

receive a request to resolve a name of a domain of an
identifier of web content;

automatically determine that the name of the domain is
to be resolved using a blockchain;

determine an identifier of a non-fungible token corre-
sponding to the domain of the identifier of the web
content;

use the identifier of the non-fungible token to send a
request to a smart contract of the blockchain to
obtain one or more resolution records for the
domain, wherein the blockchain stores the non-
fungible token associating the domain to an account
address of an owner of the domain;

receive the one or more resolution records of the
domain; and

utilize the received one or more resolution records to
resolve the name of the domain; and

a memory coupled to the processor and configured to

provide the processor with instructions.

20. A computer program product embodied in a non-
transitory computer readable medium and comprising com-
puter instructions for:

receiving a request to resolve a name of a domain of an

identifier of web content;

automatically determining that the name of the domain is

to be resolved using a blockchain;

US 11,558,344 B1

23

determining an identifier of a non-fungible token corre-
sponding to the domain of the identifier of the web
content;

using the identifier of the non-fungible token to send a
request to a smart contract of the blockchain to obtain
one or more resolution records for the domain, wherein
the blockchain stores the non-fungible token associat-
ing the domain to an account address of an owner of the
domain;

receiving the one or more resolution records of the
domain; and

utilizing the received one or more resolution records to
resolve the name of the domain.

#* #* #* #* #*

24

